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Abstract: Decision support systems have been widely used in drug discovery owing to the complexity of
data and information involved. In this article, we review both commercially available packages and
publicized in-house made systems. All selected systems should be able to handle chemical structures and
to organize information for decision makers, more specifically for medicinal chemists. Although we do
not rank these system, pros and cons of these systems will be discussed.

INTRODUCTION

In an organized drug discovery, compound progression
from high throughput screening (HTS) to preclinical study
involves numerous decisions made by scientists, medical
and patent professionals, and research managements. Unlike
many engineering or business decisions where solid data can
derive a conclusion, decisions in drug discovery are usually
made without complete data or with conflicting data. For
example, facing a compound with good binding affinity but
marginal bioavailability in one animal model, one can
decide 1) making another analog for binding and
bioavailability testing; 2) submitting the same compound
for testing the same animal model, 3) submitting the same
compound for testing a new animal model or 4) abandoning
the series and start another promising one. A decision is
usually made based not only on the data but also on other
factors such as knowledge about chemical modification,
perception of data quality, feasibility of another animal
model, personal experience of past successes and failures,
chemical patentability, budget constraint, etc. Because this
kind of decision requires highly skilled decision makers and
multiple criteria to be considered, and the process itself is so
complicated that no one can precisely describe it, it is called
semistructured or unstructured decision [1,2].

For semistructured or unstructured decisions, human
intelligence is still unmatched by the most sophisticated
computer technologies such as Deep Blue [3], an IBM’s
massively parallel computer system that was designed to
play chess at the grandmaster level. The information
technology, however, can facilitate the decision-making by
integrating data from various data sources, extracting
relevant information and present it to decision makers in an
understandable way, and providing multiple-criteria
decision-making models. Without a computerized system,
these functions have to be carried out manually by the
decision makers. For example, before selecting a promising
series of compounds for further study based on HTS data, a
scientist needs to perform at least the following tasks: 1.)
Receiving HTS hit IDs and activity data in the form of
spreadsheet; 2.) Retrieving chemical structures from the
corporate compound database; 3.) Merging the structure and
activity data together in the form of a spreadsheet or
database; 4.) Collecting other data including calculated
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properties from other computers; 5.) Grouping similar
structures together with their activities. These tedious,
repetitive and less intelligent-demanding tasks could take a
substantial portion of effort and time in a decision process.
Human errors are difficult to avoid during the data-structure
integration and transformation. In contrast, a computerized
decision support system (DSS) handles these tasks much
more efficiently and accuratly than human does.

A generic DSS is an information system consisting data
source, data integration, data warehouse, data transformation.
The data source includes various databases, spreadsheets and
text documents [1,4,5]. The data integration is computerized
processes that extract relevant data from the data source and
merge them into the data warehouse. The data warehouse or
data mart, the foundation of DSS, is a read-only analytical
database designed for specific decision-making. Finally, the
data transformation or user interface is a set of applications
that allow users to analyze data, manipulate data and
generate information. Because the DSS can provide decision
makers with relevant data, underlying information and
projected trends, it has been widely used in many business
and operational processes for years. However, those systems
are mostly designed for structured decisions where the
decision criteria are simple, and less skilled decision makers
are required.

Many chemical database software [6-14] developed in
1980s might be considered as primitive DSSs in drug
discovery. They were used to store both chemical structures
and biological data and provide some analytical functions
such as querying, filtering and sorting for different type of
data. MDDR [15] (MACCS-II Drug Data Report) is a well-
known example. The databases, however, ware designed
primarily for storing structures and general browsing, not for
supporting decision-making. Their capacities had reached the
limit when enormous HTS biological data and various
ADMET assays became available in later 1990s. Separate
databases [16-20] were used to store the biological data in
many pharmaceutical companies. The fragmented data
sources and legacy databases left by the pharmaceutical
industry mergers and acquisitions created a huge obstacle for
researchers to access complete and relevant data. The lack of
data integration mechanism and standardized information
retrieval prolonged many decision processes in compound
progression.

To be competitive in discovery informatics and be able
to take the real advantage of HTS, genomics and
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combinatorial chemistry [21], many pharmaceutical
companies, specialized software developers and academic
labs independently or jointly started to tackle the
information bottleneck. This stirred a wave of information
technology exploration in the enterprise-wide data
integrations. Many medium-to-large biotechnology and
pharmaceutical companies have developed some kind of
information technology platforms to handle the increasing
demand for data and information. Some early project-wide
data integration and modeling systems such as Weblab
Medichem [22] emerged aiming at the decision makers in
medicinal chemistry.

In this review, we focus on a number of current DSSs
used or can be used by medicinal chemists to support their
day-to-day decisions. These decisions usually involve the
selection of a compound or a series of compounds, from
many others, for further biological testing, synthesis or
development. Multiple-criteria including data and models are
needed to justify the decisions. We include both
commercially available information technology as well as a
few in-house developed systems. Some of them may not
fully fit the description of generic DSS. But all of them
should be able to handle at least 2D chemical structures.
They should be able to generate information beyond the raw
data.

It is impossible for us to cover all information
technologies related to the DSS in drug discovery due to the
technical scope and our experience. In addition, there are a
number of obstacles for an objective review of the DSS in
medicinal chemistry. First, most real world DSSs are
proprietary technologies and have rarely been revealed to
public. Second, there is almost no user’s consensus to a
DSS, which is the ultimate judgment of a good system.
Third, the DSS is intrinsically an ever-changing system as
data and models change in addition to user’s demands.
Thus, many of our comments could be out-dated when this
article is published.

CURRENTLY USED DSS IN DRUG DISCOVERY

There are basically three types of DSS technology used
in the compound progression: web, client/sever and desktop.
In a web-based system, all components including data
integration, data warehouse and data transformation are
installed on a powerful web server computer or computers. A
decision maker interacts the DSS through general web
browsers such as Internet Explore (Microsoft, Inc.) from any
desktop computers. In the second system, a set of
applications for data transformation is installed on the user’s
desktop (client) while the rest of the components resides on
a sever computer. The third technology is simply a stand-
alone system on a PC, which includes both the data
warehouse (or data mart in small scale) and data
transformation. The data integration can be done by other
technology unless the amount of data is small, a typical case
for many small drug discovery organizations.

Web-Based

Although it is simple from the user’s point of view, the
web-based DSS can be very complicated to build. These
systems can include multiple server computers and databases

across different geographical sites. Sage et al. [23] described
Lionbioscience’ decision support system composed of multi-
layer data processing. Its data warehouse SRS is able to
extract data from both flat files and Oracle databases. The
scalable DiscoveryCenter provides users with capabilities of
standard chemical structure searching, property searching,
Visualization capabilities. Users are able to share data and
models. The authors illustrated how to decide a promising
lead series for a hypothetical estrogen receptor project. Based
on experimental data and computed property distributions of
the corresponding virtual libraries, the best series can be
easily identified.

While all results in the above example were displayed
through web pages, it is not clear how much data
manipulation and modeling can really be performed with the
web interface. We recently found that Lionbioscience also
provided a desktop tool [24] , the Lead Engine, specifically
designed for Cheminformatics. Obviously, the functions of
web-based user interface are not sufficient to meet the
challenges in lead identification and lead optimization.

Instead of building a massive data warehouse such as
Lionbioscience’ SRS, IBM DiscoveryLink [25] is able to
integrate multiple, heterogeneous data sources into a single
virtual database. With one query, researchers can get a
cohesive view of results for manipulation, comparison and
analysis — while the data itself remains unchanged in
separate databases across different platforms. In fact,
Lionbioscience has an option to integrate DiscoveryLink
technology. Several pharmaceutical companies have used
these technologies to build customized enterprise-wide
discovery DSS.

Figure 1 describes the architecture of TLC [26], for
Target Lead Candidate, developed at Aventis with IBM DB2
Information Integrator. The top section is the user desktop
(Client) where the web browser and required components are
installed. These applications are generally part of the user
desktop, which means they are not new applications that a
scientist has to learn. The components in the background are
built such that minimal changes are made to the foundation
systems. The application sends the data request to the web
server, which then transmits the data to the middleware layer
that parses out the request and routes it to the appropriate
foundation system. When the data are returned from the
foundation system, the results are sent back to web server
that then returns the results to the client application that
made the request. The querying and reporting of the results
is accomplished by a business intelligence tool called Brio
[27]. The advantage with such architecture is that it is
scalable, which means that one can add many foundation
systems without disturbing or changing the structure of the
existing databases. The user interface of the application
presents the condensed version of the underlying foundation
systems called data models. There are separate data models
(or tables) for chemical, biological, logistical and analytical
data all of which contain at least one field that is common to
all of them such as a compound id or a batch id based on
which data can be linked. When the result data are returned
to the reporting tool, they are in the form of a series of rows
that need to be arranged into tables and views to make sense
of those data. On the web server, each project team will be
assigned their own area to organize their queries and
resulting views. When the queries are published to the



Decision Support Systems in Drug Discovery Mini-Reviews in Medicinal Chemistry, 2004, Vol. 4, No. 10    1021

Fig. (1). The web-based TLC system of Aventis.

portal, they are shared among the specific project team,
across project teams, across departments and across all
global sites.

ChemEnlighten [28,29] (Tripos Inc.) is an intranet-based
technology that runs in either Netscape 4.0.5 (or better) or
Internet Explorer 4.0 SP1 or better. ChemEnlighten is
designed to handle larger data sets generated by today's
combinatorial chemistry and HTS program. Its Data Viewer
allows tables to be viewed in a "spreadsheet" format that
contains structures plus the associated property data or in a
grid format that contains only structures. ChemEnlighten
integrates visual access to large tables, the capability to
generate a range of chemical metrics, and the ability to
perform analysis and selections on the data in the table. Over
300 metrics are available for database analysis and filtering.
The OptiSim algorithm is one of several techniques
available for data filtering and subset selection. OptiSim
works on combinations of metrics and mimics selections
made using hierarchical clustering. The search in
ChemEnlighten is available through UNITY. In order to take
the full advantage of the system, one should acquire other
software tools offered by Tripos.

Client/Sever

Pipeline Pilot [30,31] from SciTegic Inc. (SPP) is based
on the concept of pipelining the virtual molecules, normally
one by one, through the series of calculations or tests
represented by separate components. Each component would
add or remove some calculated properties to the molecule,
i.e. molecular weight, LogP, etc, which would be carried
with the molecule downstream and could be used for further
analysis, for example channeled into a predefined
visualization (i.e. Spotfire or Accord for Excel) so that the

user can make a decision using also visual presentation of
the data. Components and pipes can be laid-out visually,
greatly simplifying analysis and comprehension of the whole
process by a novice user. The created layouts could be saved
as proprietary "protocols" and reused by the author or others
using the same server later, or exported in an XML format
and shared among the users of multiple servers. Thus, SPP
is able to communicate with a web service, which makes it
easy to plug-in virtually any application into SPP. Figure 2
illustrates the implementation of QikProp [32] as one of the
SPP components.

SPP comes with multiple built-in components
conveniently organized by their categories and sub-categories
visually presented as folders and sub-folders. For example
the DataReaders category contains 23 components that allow
reading most popular molecular files formats (i.e. SD,
MOL2 etc.), read data directly from databases (including
ISIS33), and read a variety of files that might contain data
about molecules (i.e. Excel, comma separated, XML, etc).
DataWriters category contains components to write data in
the above mentioned file formats as well as some other (i.e.
Accord for Excel) formats.

The real strength of the application comes from its tools
for data analysis, model building, learning, library
enumeration, fingerprints and descriptor calculations. The
library enumeration engine is extremely fast and accurate. It
does not even fail stereo-chemical assignments that are the
weakest point for most of enumeration software packages
[34] with the exception of only few vendors like
CombiLibMaker [35]. One can do both fragment- and
reaction-based enumeration. Users can quickly predict
desirable properties by utilizing Bayesian learning
component, saving the model, and then applying it to the
new data.
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Fig. (2) . SPP sub-protocol that implements calling QikProp web service.

SPP offers ways to cluster the compounds using a
maximum dissimilarity method [36]. This method randomly
chooses the first center and selects other centers one by one,
so that the new center is maximally different form the
existing ones. When enough centers are selected, the rest of
molecules are assigned to their nearest cluster centers. The
SPP component provided for clustering allows clustering on
different types of properties that can be either predefined in
SPP or supplied by the user. Clustering on numerical
properties vs. fingerprint data may lead to very different
results. SPP also provides a component that allows viewing
molecules grouped by clusters.

Spotfire’s DecisionSite 7.0 for Lead Discovery [37-39]
provides easy access to standard data repositories such as
ISIS databases and IDBS ActivityBase, which is an Oracle
database. Data in files such as excel spreadsheet and text file
can also be imported directly. Compound structures and
biological data from different sources can be merged through
a unique key. However, the importing process has to be
manually carried out one at a time. This could be
cumbersome where multiple structure and activity databases
need to be linked. Once data are loaded, the document can be
shared with other users.

Spotfire has probably the most impressive data
visualization and dynamic filtering capacities. Users have a
lot of options to view and display multi-dimensional data.

A unique structure viewer, which flashes up a structure when
a user moves the mouse cursor over a data point in a
scattering plot, has not been seen in other applications.

For chemists, DecisionSite can search both local and
remote ISIS databases with substructure, similarity and list.
ISIS/draw is called for drawing structures. The list search
only allows for registration key IDs, which could spell
trouble for databases using different structure ID other than
the registration ID. It has been reported that structure
searching using CAS SciFinder is also available, which adds
another dimension of convenience. Because it is mainly a
data visualization tool, DecisionSite does not have structural
clustering and other cheminformatics functions. However,
once the information is provided, DecisionSite is able to
read and display it including non-numerical information
such as ISIS key and maximum common substructure
(MCS) [40-46] string.

Leadscope [47-52] is a software for systematic
substructure analysis using a predefined hierarchy template
library containing ~27,000 chemical features. The activity
statistics associated with each feature are readily displaced
with colors for quickly identifying promising features and
compounds. It provides more options on searching based on
Boolean combinations of chemical structures (exact,
substructure and similarity), property ranges and textual
searching.
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Fig. (3). A schematic view of the Email trigged data integration and information buildup process used in HAD.

Similar to Spotfire, Leadscope reads a single SD file
with both structures and data or reads a SD file for structures
and text file for data. However, non-numerical data field will
be ignored. New data can be merged with existing structure
but not with existing data. It can search both internal stored
structures and external SD files. For efficient data integration
and search, it is recommended to establish an internal
structural database and update it regularly. This can be done
on a server with Leadscope Enterprise.

Leadscope provides scaffold analysis and allows users to
choose one of them to build a SAR table. This function can
be very useful in focused library design. It also provides
interactive filtering capability. However, it only provides
online Help with a PDF file, which could be difficult for
casual users.

The newest release of ClassPharmer Suite [53-57] from
Bioreason emphasizes on structural classification and SAR
model by using a recursive-partitioning (RP) [58-60]
method. It takes SD file as main data sources. A user has the
option to choose primary key field. It will report which
record cannot be imported in a log file. It can perform
substructure searches on external SD or SMILE files [9].

Bioreason technology produces chemical classes using a
MCS-based approach. A unique feature is that a user can
restrict the classification to essentially a partition of the
compounds or allow compounds with more scaffolds or
structural domains to be included in multiple classes
described by the different scaffolds. This will enrich the
information content of the classes to which a compound
legitimately belongs to thereby facilitate multiple SAR
studies.

It has many analytical functions such as sorting,
interactive filtering and SAR tabling. The distribution charts

for each class in a spreadsheet format provide basic statistical
information, which can immediately strike user’s eyes to
identify promising classes. It provides a set of
pharmacophore feature for users to build predictive model
using the RP method.

Desktop

HAD [61,62] is a simple and economical solution
initially developed to handle HTS hits selection. The system
utilizes several existing software in chemistry and modeling
to merge, organize structure, data, information and
knowledge models. Everything is encapsulated into a single
SD file and sent back to the users for exploitation and
analysis, generally with Isis/base. Gradually, the system
becomes a multifunctional information retrieval and analysis
system.

The system relies on Unity databases, which can be
automatically synchronized with other databases such as
ISIS/host, providing structural data. The structure IDs and
activity data are provided by a user through an email. The
email received by the server triggers the automated process
of data integration, information buildup and return of the
generated SD file as seen in (Fig. 3).

The data integration process includes searching multiple
structure databases (Unity) for matching IDs and merging
extracted structures with the activities. The information
buildup includes computing commonly used molecular
descriptors such as clogP and PSA, clustering structures
based on MCS, and generating various flags to alert hazard
chemicals or potential protease inhibitors. The whole process
is carried out using software Sybyl in batch mode.

When the generated SD file arrives in the user’s email
inbox, s/he can import it directly into a pre-designed
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ISIS/base template to make a data mart. All functions of
ISIS/base can be used to interact with the data and
information. The other option is to use Excel for data
analysis since it can read SD file. A unique feature in this
system is that users can sort chemical structures according to
their resemblance. This is especially useful when a set of
diverse structures needs to be examined one by one. The
structural organization is done by sorting MCS string,
which is generated during MCS clustering and saved as a
part of molecular records. In addition to using the ISIS/base
for data, information analysis, one can directly link it to
Spotfire.

Others

There are a number of DSS-like systems reported but
with little technical details. Neurogen [63] first revealed its
Accelerated Intelligent Drug Discovery (AIDD) platform that
integrates all major drug discovery technical components,
such as combinatorial/medicinal chemistry, high throughput
pharmacological screen, computer aided molecule design and
research informatics, to accelerate the processes of lead
identification and optimization. It combines the power of
massive parallel data processing to highspeed compound
synthesis and biopharmaceutical screen to support the
decision process in new drug discovery projects [64,65].
Neurogen also transferred the technology to Pfizer’s R&D.

Bristol Myers Squibb [66] has implemented SMART-
IDEA (Structure Modeling and Analysis Research Tool –
Integrated Data for Experimental Analysis), a part of a wider
decision-support technology platform that expedites the drug
discovery. The system uses Tripos' MetaLayer technology to
integrate experimental data with a comprehensive suite of
analytical tools that provide a virtual workbench for Bristol-
Myers Squibb's in-house chemists and biologists. Through
its enhanced computational and predictive capabilities and
ability to analyze and visualize data on multiple compounds,
SMART-IDEA helps shift the drug discovery process from
one that has traditionally been sequential to one that is
'parallel'. Further improvement [67] will integrate Tripos'
FormsBUILDER technology, a forms-based querying tool
for retrieval and browsing of research data, into the SMART-
IDEA application. This form-based searching technology
enables scientists to easily customize their own forms and
combine queries requesting chemical structures with more
traditional data.

Molecular Operation Environment (MOE) [68] from
Chemical Computing Group is a nice lightweight tool that
allows addressing a lot of issues related not just to
Molecular Modeling and Chemoinformatics, but also
Bioinformatics. MOE could run on the large number of
platforms including different flavors of UNIX, Linux, and
Windows.

What elevates MOE to the lever of a DSS, is its ability
to access multiple data sources (i.e. its own proprietary
format, databases, SD files, etc), convert the data into its
internal representation, perform required calculations (i.e.
descriptor, properties, or even docking), and even visualize
the results in order to simplify the decision making process.
The whole process could be customized and automated by
using a Scientific Vector Language (SVL). SVL allows
manipulating small molecules, proteins, and nucleic acid

chains. SVL is an interpretable language that is chemically
aware, which makes it a good choice for writing scientific
calculations. There is a fairly large scientific community that
creates applications in SVL. Nevertheless, as an interpretable
language, it has a lot of deficiencies related to the limits on
its performance that is especially noticeable if one would
attempt to encode some quantum chemistry algorithms or
demanding visualization routines. In addition to that, it is
almost impossible to find professional software engineers
familiar with SVL for the large-scale application
development. The company might be much better off
introducing a C-like language (i.e. Java or C#) and creating
chemically aware libraries for that language.

Although anybody can do some simple operations in
MOE, mastering it requires much steeper learning curve then
SPP and the product might not be suitable for the most of
users outside in-silica departments.

CHALLENGES IN DSS DESIGN

Users (Decision Makers)

There are a number of challenges in the selection, design
and implementation of a successful DSS for medicinal
chemistry. The foremost is the acceptance of the decision
makers, mainly the medicinal chemists, who have been
using various solutions in the decision processes. It is not
unusual to see different opinions about a new DSS. A power
user may consider it unnecessary because s/he already has
other tools to do the same tasks more effectively.
Conversely, a casual user may feel the system is too
complicated to learn and use efficiently. A new DSS should
make majority of users more efficient and effective in the
day-to-day research activities

The data integration, query and user interface are
primarily related to the efficiency of a DSS. The goal for
this part is to save user’s time on non-scientific tasks. A
new technology, even if it has fast data processing speed,
does not necessarily save the user’s time. Different options
need to be carefully compared to match user’s requirements
and skills. For example, we implemented email as the
requesting protocol in HAD because of the convenient drag-
and-drop operation to attach a SD file to it.

The effectiveness of a DSS is conjugated with the
presentation of data, information and knowledge. The key is
when and how many. A decision maker may not want to see
all the data simultaneously but just a main activity, i.e. IC50
or EC50. Too much of data can confuse users. Many
biological data have large discrepancies. Historical data can
be reported using different units and under different assay
conditions. There is an array of computed molecular
properties one can feed into a DSS. The adequate amount of
data, information and knowledge models in a DSS can only
be determined by the system refinement in accord with the
responses from users and organizations.

Technology

The Web-based DSSs have been widely implemented in
many pharmaceutical companies for drug discoveries. Their
main function seems to be on the data integration side,
which is the bottleneck in many organizations. Little
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desktop support and one place for data are the greatest
advantages. For a research organization with multiple
geographical sites, this kind of system is a necessity. For
these systems to become a true DSS for medicinal
chemistry, functions in data transformation such as structure
clustering and sorting needs to be enhanced. The web portal
technology may be used to add more analytical tools for the
end users. Compared with other two technologies, the web-
based system is usually not specifically designed for
medicinal chemistry except Weblab Medichem [22], which
is no longer marketed. Most of them do not provide
independent clustering of chemical structures, an important
data transformation process that the decision makers can
benefit from.

Client/server-based DSSs are commercially available and
require less IT supports on both the server and desktop.
They mainly focus on data analysis and often provide their
own unique proprietary technologies that medicinal chemists
find useful in real situations. They can usually connect only
to one data source at a time. Unless a user is familiar with
all data sources and conversions, preparing needed data with
acceptable format may prevent some decision makers from
using the DSS. Thus for commercial packages,
customization to link internal information systems is needed
for medicinal chemists. Some programs cannot merge new
data with the existing data internally. These weaknesses need
to be improved in the future.

Storing project-wide data only on a server computer has
the advantage of sharing data and information. This requires
a highly reliable and scalable server and backup system. The
level of file permissions may also need to be considered if
multiple users are allowed to access the same file. The
setting will be difficult for mobile computing or
presentation of results at a place where no network exists. Of
course, these problems disappear when a user can save the
data on the front-end.

The desktop DSS is suited for decision makers who have
less data demand in specific processes such as evaluation of
HTS actives or a series of compounds with multiple
experimental datasets in lead optimization. In fact, the
majority of medicinal chemists only need to search but not
to analyze the enterprise-wide compound collection. Most
desktop DSSs are able to meet this demand. They are less
likely to be affected by network outage or server crash. Other
advantages include mobile computing and sharing results
with other scientists. Most client/server DSSs also provide
stand alone desktop versions. Like client/server DSSs,
desktop DSSs lacks ability to integrate complicated
chemical and biological data automatically unless an
additional customization similar to HAD is implemented.

Some desktop DSSs can be quite demanding in terms of
PC’s memory. This could be additional cost one needs to
consider for a wide range implementation. Users should also
be aware that all systems need some time for data integration
and processing depending on the number of structures and
datasets. It is good to give users an indication of how long
the process needs to complete, such as a window time bar
provided by ClassPharmer Suite and SPP, or simply an
email reply by HAD. Thus, the users can plan other research
work and will not be frustrated waiting for results.

The division of the three architectures is not important to
the users and their boundaries are not so distinct and
sometimes even change. For example, most client/server
DSSs also provide stand alone desktop versions. The
desktop HAD (Isis/base) relies on email (a client/server) and
sever computer for data integration and population. The web-
based Lionbiosceince technology now offers a "thick" client
called Lead Engine to support medicinal chemistry.
Ultimately, a good DSS will use the necessary technology
to satisfy the decision makers.

Chemical Structure Processing

Processing chemical structure may be the most important
task in the DSS. Due to the diversity of chemical structures
and non-standard input by human, errors are very difficult to
avoid in many early DSSs. Frequently encountered problems
include that a SD file cannot be read or the key ID is
mismatched. These problems may be small for a
computational chemist, but discourage casual users such as
most medicinal chemists. Without a quick fix or an
alternative plan, a real decision process can be delayed,
which is not tolerable in a competitive drug research
environment. Thus, a casual user should avoid using a new
DSS unless it has been thoroughly tested.

Retrieve and Merge New Data

Ideally, a decision maker should retrieve all needed data
with just a few keystrokes or mouse clicks. Most
commercial packages, however, are still requiring users to
prepare their own chemical structure files from other
structure sources except Leadscope, which can make copy of
structure database on Leadscope Enterprise server. Although
the task is not very difficult for most medicinal chemists,
the automation of the task made a DSS more user-friendly.

The more challenging task is to integrate all biological
data associated with a set of query structures and present
them to the decision makers in a DSS. There seems no
technical obstacle to retrieve various data, but the
standardization of the data remains difficult. Many historical
scientific data are obtained with different assay conditions,
stored with different units. Because substantial resources are
needed for any implementation, questions such as "Are they
compatible?" and "Does a researcher really want to see all of
them?" have to be answered first.

An alternative is to use data reduction. Instead of pulling
out all biological data associated with a compound, A, at the
beginning, one only queries whether A has been active in
any historical biological assays. The information can easily
be flagged with A and other relevant compounds in a DSS.
When a decision maker narrows down a few promising
compounds including A, s/he can then request for exact data
associated with fewer compounds using existing information
systems. Building a very complicated DSS can thus be
avoided.

Data Reduction

The concept of data reduction can also be used to convert
non-searchable and non-sortable data into searchable and
sortable data. Many biological data are non-numerical such
as ">30" or "0.01, 0.02". Many DSSs simply cannot read in
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such data. We had a situation where a set of compounds has
to be selected from about 2000 compounds for advanced
studies based on rankings of multiple selectivity assay data,
which has the above two kinds of data.

A solution we derived is to export the raw data into a SD
file and covert the non-numerical data into the acceptable
format. A number of rules has been set such as converting
">30" to "60" and averaging multiple data. The application
has been developed as a Web friendly protocol as described
in SciTegic help allowing for repeated uses. In this
approach, the original data retains their integrities while the
advanced analysis can be easily performed.

Clustering

Chemical structure clustering is a must-have feature in a
good DSS due to its usage in HTS and SAR. The clustering
transforms individual compound data into the information
about the activities or properties of a series of compounds.
The underlying hypothesis is that each member shares a
common structural component that is responsible for
activities or properties. Most drugs are indeed developed
from a series of similar compounds. While the computer-
clustering results may not be agreed with everyone, it does
provide a way of organizing structures in many cases, which
speed up compound selections.

Many DSSs offers MCS-based or scaffold-based
clustering because its results are similar to what most
medicinal chemists can generate manually but with greater
efficiency. Comparing with fingerprint-based methods,
Azzaoui [69] shows that MCS-based clustering accumulates
more true hits in top ranked classes.

Each program may use different algorithm for MCS
clustering with wide range of parameters for final tuning.
For similar compounds, the results should not be
significantly different. We have tested one set of 33
structures using both Bioreason and HAD (based on Tripos’
MCS). The former yields four classes with 1,2,5 and 25 in
each. The later yields three classes with 1,2 and 30 each. The
last class with 30 structures can further be divided in two
subsets, 4 and 26 corresponding to the classes with 5 and 25
ones, respectively. Only one compound has discrepancies
between the two methods, which can be accepted by different
medicinal chemists.

Other Functions

Sorting and filtering are also needed in a DSS for
medicinal chemistry. Sorting is an important way to turn
data into information. For example, sorting numerical
activities allows users to identify a set of promising
compounds quickly. Sorting structures allows users to
identify closely related structures. Filtering can be used to
remove unwanted structures thereby focus on promising
ones. A filter can be applied before data integration or
dynamically controlled by users as we see in many
commercial packages.

Models

While the overall decision in drug discovery is data-
driven, models play an indispensable role in many
processes. Incompleteness of data, conflicting data and high

cost of experiments have placed models as a component in
many decision processes. A well-known example is the
Lipinski’s rule of five [70], which is used to estimate the
oral bioavalaibility. Almost every DSS we reviewed has this
model. However, how to apply the model is the decision
maker’s choice. One may relax the rule for widening the
scope of structures. Others want to apply more stringent
lead-like rules [71] to increase the chance of success based on
statistics.

An ideal drug-like compound should also minimize the
interactions with other receptors thereby reducing potential
adverse effects. Screening against a panel of receptors can
reduce this risk. In addition to the cost, however, it is
impossible to screen against all receptors. One solution
looks for the compound history, i.e. its activities against
other drug targets in the past. Due to the limited in-house
data, the specificity of a chemical class is difficult to assess
without a lengthy investigation. Alternatively, one can use
an artificial intelligence (AI) system to recognize chemical
patterns that are known to cause certain biological activities.
This approach has been used to develop several computer
systems for predictions of toxicity and metabolism [72,73].

There are increasing demands for integrating these
prediction systems into the DSS to support the decisions
that ones have to make without sufficient data. We have
shown that a knowledge-based protease inhibitor prediction
system [74] can be implemented in HAD. The core of the
prediction system is sets of 2D structural queries, which are
validated by retrieving over 90% of annotated protease
inhibitors in MDDR. The query results are displayed as
flags indicating whether a structure matches known
inhibitors of four classes of enzymes, serine, cysteine,
aspartate and metallo protease. The usefulness of the
prediction system has been demonstrated in a lead selection
process.

Medicinal chemists have used SAR table in lead finding
and lead optimization for a long time. The table can be
generated easily with commonly used software such as
ISIS/base once a core structure and substitution sites are
defined. Several new DSSs offer even better solutions by
automatically defining MCS as a core and corresponding
substitution sites. Users also have options to choose
different MCSs in subsets as a core. These functions
facilitate the knowledge building process.

Many DSSs provide statistical modeling tools for users
to build statistical models or quickly recognize good
(predictive) structure-activity relationships. Bayesian
learning component offered by SPP probably aim at power
users. In contrast, causal users should have no difficulty to
understand pharmacophore features predicted by the recursive
partitioning of Bioreason’s ClassPharma. These models had
and will continue to have greater influence on the decisions
of what compounds to make by medicinal chemists.

CONCLUSIONS

The complexity of drug discovery requires both human
intelligence and better information technologies. How to
apply both in every stage of the research becomes the
challenge to scientists and technology professionals. The
DSS intends to replace tedious and time-consuming human
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work in data integration and data transformation. The basic
components of a DSS for medicinal chemistry should
include data acquisition, chemical structure clustering,
searching, filtering and sorting. Models and advanced data
mining technologies will appear more in DSSs. The
implementation and performance of a particular DSS
depends not only on the software, but also on user’s
computer skill, criteria of decisions, existing information
systems, technical support and the cost. The utilization of a
suitable DSS should increase the research productivity for
medicinal chemists.
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